
Learning to Simulate Dynamic Environments with GameGAN
Seung Wook Kim, Yuhao Zhou, Jonah Philion, Antonio Torralba, Sanja Fidler

https://arxiv.org/abs/2005.12126
https://arxiv.org/pdf/2005.12126.pdf

TL;DR
GameGAN is a generative model that learns to visually imitate a desired game by ingesting
screenplay and keyboard input. The GAN renders the next screen using a GAN each time a key
is pressed. GameGAN has an optional memory module that builds an internal map of the
environment to enable long-term consistency. GameGAN can also distinguish between static and
dynamic components within an image.

Introduction
Designing good simulators for artificial agents is extremely important but challenging. It is
traditionally done with time consuming and difficult manual labour. Learning to simulate by
simply observing is the most scalable way going forward. This paper presents GameGAN, a
generative model that learns to imitate a desired game through only screenplay and keyboard
actions. GameGAN has higher quality results and has memory to allow the agent to return to
previously visited locations with high visual consistency.

GameGAN
GameGAN should model both the deterministic and stochastic nature of the environment.
GameGAN predicts the next image given the history of images along with actions and a
stochastic variable that corresponds to randomness in the environment. It is composed of
multiple parts. The dynamics engine maintains an internal state variable with past actions,
randomness, and inputs. Environments that require long-term consistency, can use an external
memory module. The rendering engine produces the output image given the state of the
dynamics engine. Adversarial losses along with a proposed temporal cycle loss is used to train
GameGAN.

Dynamics Engine
GameGAN has to learn how various aspects of an environment change with respect to the given
user action. For example, walking through a wall is not possible., and how other objects behave
because of the action. The dynamics engine learns these relations. It has access to past history,
and is thus implemented as a LSTM. It computes action, randomness, the image, and the
memory vector if the memory module is used.

https://arxiv.org/abs/2005.12126
https://arxiv.org/pdf/2005.12126.pdf

Memory Module
Long-term consistency is required when the simulated scene should not change when the agent
comes back to the same location. This is challenging as the model must remember every scene in
the past. An external memory module is used to store the info.

Rendering Engine
The rendering engine is responsible for rendering
the simulated image. It can be implemented with
standard transposed convolution layers.
However, a specialized rendering engine
architecture is used to ensure long term
consistency when required.

Training
GameGAN leverages adversarial training to learn
environment dynamics and to produce realistic
temporally coherent simulations. For long-term
consistency, cycle loss is used to diesentagle
static and dynamic components to learn to
remember what it has generated.

To ensure each generated frame is realistic, the single image discriminator and gameGAN play
an adversarial game.

GameGAN also has to reflect the actions taken by the agent. Three pairs are given to the
action-conditioned discriminator. . denotes real image,x

 the generated image, and an action. , a sampled negative action. The job of thex︿ a
discriminator is to judge if two frames are consistent with respect to the action.

A Temporal discriminator is implemented as a 3D convolutional network. It takes several frames
as input and decides if the sequence is generated or real. This ensures time is considered.

GameGAN is trained end-to-end. It employs a warm-up phase where real frames are fed into the
dynamics engine for the first few epochs, then slowly reduces the number of real frames to 1.

Experiments
Training Data for pacman was generated from a trained DQN

To test the simulated environment, a RL agent can be trained on the simulated environment then
tested in the real environment.

Conclusion
GameGAN leverages adversarial networks to simulate games by observing screenplay and does
not require access to the game’s logic or engine. GameGAN has a memory module to ensure
long-term consistency.

