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TL;DR 
GameGAN is a generative model that learns to visually imitate a desired game by ingesting 
screenplay and keyboard input. The GAN renders the next screen using a GAN each time a key 
is pressed. GameGAN has an optional memory module that builds an internal map of the 
environment to enable long-term consistency. GameGAN can also distinguish between static and 
dynamic components within an image. 
 
Introduction 
Designing good simulators for artificial agents is extremely important but challenging. It is 
traditionally done with time consuming and difficult manual labour. Learning to simulate by 
simply observing is the most scalable way going forward. This paper presents GameGAN, a 
generative model that learns to imitate a desired game through only screenplay and keyboard 
actions. GameGAN has higher quality results and has memory to allow the agent to return to 
previously visited locations with high visual consistency. 
 
 
GameGAN 
GameGAN should model both the deterministic and stochastic nature of the environment. 
GameGAN predicts the next image given the history of images along with actions and a 
stochastic variable that corresponds to randomness in the environment. It is composed of 
multiple parts. The dynamics engine maintains an internal state variable with past actions, 
randomness, and inputs. Environments that require long-term consistency, can use an external 
memory module. The rendering engine produces the output image given the state of the 
dynamics engine. Adversarial losses along with a proposed temporal cycle loss is used to train 
GameGAN. 
 
Dynamics Engine 
GameGAN has to learn how various aspects of an environment change with respect to the given 
user action. For example, walking through a wall is not possible., and how other objects behave 
because of the action. The dynamics engine learns these relations. It has access to past history, 
and is thus implemented as a LSTM. It computes action, randomness, the image, and the 
memory vector if the memory module is used. 
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Memory Module 
Long-term consistency is required when the simulated scene should not change when the agent 
comes back to the same location. This is challenging as the model must remember every scene in 
the past. An external memory module is used to store the info. 
 
Rendering Engine 
The rendering engine is responsible for rendering 
the simulated image. It can be implemented with 
standard transposed convolution layers. 
However, a specialized rendering engine 
architecture is used to ensure long term 
consistency when required. 
 
Training 
GameGAN leverages adversarial training to learn 
environment dynamics and to produce realistic 
temporally coherent simulations. For long-term 
consistency, cycle loss is used to diesentagle 
static and dynamic components to learn to 
remember what it has generated. 
 
To ensure each generated frame is realistic, the single image discriminator and gameGAN play 
an adversarial game. 
 
GameGAN also has to reflect the actions taken by the agent. Three pairs are given to the 
action-conditioned discriminator. . denotes real image,x  

 the generated image, and  an action. , a sampled negative action. The job of thex︿ a  
discriminator is to judge if two frames are consistent with respect to the action. 
 
A Temporal discriminator is implemented as a 3D convolutional network. It takes several frames 
as input and decides if the sequence is generated or real. This ensures time is considered. 
 
GameGAN is trained end-to-end. It employs a warm-up phase where real frames are fed into the 
dynamics engine for the first few epochs, then slowly reduces the number of real frames to 1. 
 
 
 
 
 



 
Experiments 
Training Data for pacman was generated from a trained DQN 

 
 
To test the simulated environment, a RL agent can be trained on the simulated environment then 
tested in the real environment. 

 
 
Conclusion 
GameGAN leverages adversarial networks to simulate games by observing screenplay and does 
not require access to the game’s logic or engine. GameGAN has a memory module to ensure 
long-term consistency. 

  
 


